2-Lithiation of NN-Dimethyl Cyclopentadienyl Manganese Tricarbonyl Sulphonamide: a Route to 1,2-Disubstituted Cyclopentadienyl Manganese Tricarbonyl Derivatives

By R. G. Sutherland* and A. K. V. Unni

(Department of Chemistry and Chemical Engineering, University of Saskatchewan, Saskatoon, Canada)

Summary The title compound (I) was metallated in the 2-position by methyl-lithium and the resulting 2-lithio-sulphonamide (II) was condensed with D₂O, CO₂, and several carbonyl compounds to give the corresponding deuteriated compound, acid, and carbinols, respectively.

WE report the use of the 2-lithio-sulphonamide (II) as an intermediate in the synthesis of 1,2-disubstituted cyclopentadienyl manganese tricarbonyl derivatives. Previous attempts at the preparation of the 1,2-disubstituted cymantrenes have utilised electrophilic substitution of monosubstituted derivatives when mixtures of 1,2- and 1-3,

TABLE

Reagent	Product (III)	M.p.	Yield %
	R		
$D_{2}O$	D	166—168°	44
CŌ,	CO_2H	74° dec	53
Ph.CO	Ph.COH	184—185°	39
Me ₂ CO	Me ₂ COH	85—86°	38
PhCOMe	PhMeC(OH)	148—150°	30
PhCHO	PhCHOH	98—99°	50
FcCHO	FcCHOH	201202°	14
FcCOMe	FcMeC(OH)	158—159°	14
CO_2 -/ CH_2N_2 *	CO ₂ Me	121—123°	83

* In one experiment treatment with diazomethane gave a 25% yield of N-methyltoluene-o-sulphonamide but we have been unable to repeat this experiment.

disubstituted compounds have been obtained. These mixtures are very difficult to separate and, in any case, the 1,2-disubstituted isomer is the minor product. Compound (I),† m.p. 166—168°, was prepared in 50% yield from the corresponding sulphonyl chloride¹ and dimethylamine

hydrochloride, and had m/e 311 (M^+) and the n.m.r. spectrum (CDCl₃) consisted of two triplets and a singlet at τ 7·25. One triplet was centred at 4·75 $(J=1~{\rm Hz})$ and the other at 5·20 $(J=1~{\rm Hz})$. This is an ${\rm A_2B_2}$ pattern and comparison with the n.m.r. spectrum of the 2-deuteriated compound allows us to assign the resonance at 4·75 to H¹ and that at 5·20 to H². The resonance at 7·25 is associated with the NN-dimethyl group as confirmed by the integral ratio 1:1:3. The 2-lithio-sulphonamide (II) was generated using methyl-lithium as base in dry tetrahydrofuran at -70° under nitrogen. The anion was then quenched by addition of the agents listed in the Table. The reaction mixture was then worked up in a conventional manner and the product(s) isolated by chromatography on alumina.

These results parallel those of Hauser, Slocum, and their co-workers² which showed that NN-dimethylbenzene-sulphonamide undergoes ortho-lithiation.

We thank the Ethyl Corporation for a gift of cyclopentadienyl manganese tricarbonyl.

(Received, March 16th, 1970; Com. 370.)

¹ M. Cais and J. Kozikowshi, J. Amer. Chem. Soc., 1960, 82, 5667.

[†] All new compounds have been fully characterised.

² H. Watanabe, R. A. Achwarz, C. R. Hauser, J. Lewis, and D. W. Slocum, Canad. J. Chem., 1969, 47, 1543.